Thursday, November 8, 2012

Server Recovery

How to Incorporate Data Recovery into Your Server Recovery Business Continuity Plan Proactive Suggestions for your Disaster Plan Disaster recovery planning is a challenging process. During the planning phases, people naturally concentrate on tangible disasters such as fire, break-ins, and natural disasters. Data disasters should also be considered part of your disaster recovery plan. Here are some proactive suggestions for your disaster plan: Documentation A review of emergency procedures on a quarterly basis is a proactive approach to disaster recovery. Key personnel should be up to date on all technical articles relating to primary business systems or messaging systems. Detailed documentation should be available in the server room area, describing individual machine configurations and software settings. Administrative documentation should be complete with each machine. Microsoft Exchange Server Redundancy For instance, in a business running Microsoft Exchange Message Server, is there a secondary restore server in place to handle the restoration of the server’s Information Store during an outage? All current versions of Exchange Server use Log Files to record message transactions before they are committed to the Information Store database. While ‘Circular Logging’ may assist in saving storage space, during a data disaster a complete set of log files are critical in bringing a restored Information Store up to date and getting your users back to their data. Archived Data on Tape Media Disaster recovery planning should have plans for off-site storage of backup tapes and other media. Tape backups bring additional validation testing steps to the plan. It is good practice to test the backups periodically. Tape rotation should be regular and consistent and monitoring the life spans of tapes is an important process to reduce media failures. RAID Systems When there are disasters involving RAID storage systems, SAN systems, JBOD systems, and NAS systems, disaster planning takes a different perspective. These storage systems have redundancy architecture to prevent outages and disasters. However, this can provide a false sense of security. For instance, one client last year had 40TB of storage space spread over 20 servers. These systems had hardware RAID 1+0 configurations. Problems began happening on one server when a drive would go off-line for a moment. The controller card would switch to the mirror copy as part of the redundancy process. At some point, the first drive would come back online. The controller card would switch back to the original drive and there would be inconsistent data from a volume and file system perspective. After a system power-down and restart, the storage system hardware reset. The operating system’s automatic volume repair program started and began making repairs. This became the cause of additional problems to the file system integrity and the critical data was no longer available. The data had to be available immediately and Remote Data Recovery was the option for this client. This case history is interesting because of the cascade of failures that happened in quick succession. This client was processing large amounts of data from three shifts per day. To archive that amount of changing data every night was not possible. The client had been confident that the storage configuration was ‘bullet-proof’ due to the mirroring. These configurations can be successful against multiple drive failures. In this case, however, the drive never failed, it just went off-line. When the drive came back online, there were file system inconsistencies. As a result, the data became unavailable when the automatic volume repair tool started making repairs. Engineers worked throughout the night to get the data available. In the end, the recovery was a 100% success. Data disasters can be single-tiered; a drive fails or data is missing or multi-tiered; data disasters are combinations of small disasters. Ontrack Data Recovery’s understanding of these unique circumstances is what sets us apart from other data recovery companies. With recent issues bringing the importance of business continuity to the forefront it is essential to be prepared. With Ontrack Data Recovery as part of your disaster recovery plan you can feel reassured knowing that when a data disaster strikes, you have the support of our nearly 20 years of experience along with offices, clean rooms, engineers, and employees located around the world. © 2006 Kroll Ontrack Inc.

Hard Drive and Clean Room Technology Hard disk technology has been around since the Fifties. The large multi-platter based systems, IBM 305 RAMAC, were only used in large mainframe systems. It wasn’t until the Seventies and Eighties that hard disk storage became more available. This was due to cost reductions, innovation from magnetic media formulations, storage capacity, performance, and manufacturing techniques. Hard disk storage manufacturers have been always working to improve the technology. Storage space, data transfer rates, and internal error checking have been the guiding principles of hard drive technology. Ontrack Data Recovery works hard to maintain our capabilities to be compatible with these emerging technologies so that we can provide the best hard drive recovery for your client’s data. What are some of the advancements in hard disk storage devices? What are some common data loss scenarios with hard disk storage? What are some of Ontrack Data Recovery’s capabilities that set it apart from other data recovery companies? This document will help answer these questions and more. Let’s begin with looking at the inner workings of the hard disk itself. Hard Drives — Technology in Action As you know, hard drives are a combination of sophisticated electronic and mechanical systems that incorporate a number of specialized motors and electro-mechanical components to read and write data. Hard drive technology has substantially advanced in the past 10 years. In fact, hard drives are designed to manage themselves in addition to reading and writing data. Hard drives today use a number of algorithms to verify data on the drive and also maintains a ‘Defect Management’ list internally that constantly monitors their own health and performance . If a sector is beginning to fail, the hard drive’s electronics will remove that sector from use. In addition to this, S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) circuitry has been incorporated on many hard drives and is used to monitor all of the internal systems. Despite these safeguards, hard drives can fail. There can be a number of reasons for hard drive failure, for instance physical damage can result when the hard drive or case is jarred while operating or even when powered off. Power spikes or fluctuations can damage the electronics or corrupt the data on the drive. Internal mechanical parts can seize up due to high temperatures if the drive does not have enough airflow to keep the unit cool. Types of common failures include: Problem Description Internal Mechanical Failure This is the failure of any moving mechanical component found within a storage device. Intermittent Failure This is the failure of a storage device to operate reliably. In some cases it may not be possible to isolate the exact fault. Physical Media Damage This can occur when a head has physical contact with the surface of platter. When the head(s) come into contact with the platter it digs into the platter removing a chunk of the media. As the platter spins, debris is scattered causing read errors. Media Corruption This type of damage can effect the magnetic information stored on the media. It can affect both the user data stored on the drive and the critical drive servo information that controls the positioning of the heads. Electronics Failure This is the failure of a storage device’s circuitry (the brain of the storage device). Hard Disk Recovery — Exposing the Myths A common misconception about hard drive data recovery is that repairing hard drives means replacing parts. If only it were that easy! Hard drive technology is always changing— manufacturers are constantly using different mechanical designs. Today’s hard drives have no room for errors when it comes to platter and head alignment. The tolerances are so exacting that hard drive manufacturers even design ways to keep the Base-Casting Assembly, where all the components are attached to, from shifting due to high temperature situations. For instance, one hard drive manufacturer of high performance SCSI based drives actually designs their Base-Casting Assembly with pre-stress points. The assembly does not line up from corner to diagonal corner—it’s pre-torqued. When the casting assembly heats up, the unit actually twists back (thermal expansion) into a true line-up from corner to corner. With the byte-density of most large hard drives today being 4gb to 6gb per square inch, absolute precision is required for these high capacity and high speed drives to operate reliably. Hard disk manufacturers are working to increase how many bytes can be squeezed into a square inch. The mechanical precision of today’s hard drives makes head assembly replacement nearly impossible without specialized tools. Platter removal is dangerous and will affect how the drive reads the sectors. As previously mentioned if just one component is out of alignment, the drive will not find the required sectors. If the hard disk electronics cannot find the sectors requested by the controller, it may endlessly try to find those sectors or it will shut down the unit. Mechanical precision is just one side of hard drive technology - the electronics are just as finite. Exchanging circuit boards between drives used to be a quick way to work around a failed circuit board in the past. The electronics are much more complicated, and as a result the different revisions of a circuit board are rarely compatible. The innovations of the past 15 years have made a circuit board swap as a solution a thing of the past. Today’s hard drives are designed from basic primary components as the foundation first and then other components are built around that. For instance, research and development improvements in platter and magnetic media require research and development improvements in head design. These designs require that the electronics be ‘custom-made’ for that drive. Hard drives are ‘fine-tuned’ to the properties of the storage media and read/write heads. Similar to how a radio is tuned to a specific radio frequency; hard drives are finely tuned to complement data signals that are read from the storage media. Hard drive manufacturers make large batches of drives so there will be similarities between drive models. However, the Revision Code (proprietary hard drive read-only software that is used by the electronics to manage and operate the hard drive) changes frequently within the same model and batch. Hard drive innovation requires drives to be constantly improved upon. All of this requires extensive training in electronics and computer science to be able to work with these storage devices. Qualifications of Hard Disk Recovery To be able to work on hard drives, Ontrack Data Recovery clean room engineers have engineering or electronic degrees. Ontrack Data Recovery has a dedicated research and development department that is made up of clean room engineers from our domestic and international offices. They work together with the hard drive manufacturers to find the best scientific approaches to hard drive failures. The technological innovations in the hard disk storage industry have inspired Ontrack Data Recovery clean room engineers. They closely follow advancements made within the industry. Ontrack Data Recovery designs it's own software, hardware, and electronic tools to work with hard disk storage devices. Storage hardware should not be considered unrecoverable until determined so by Ontrack Data Recovery’s engineering staff. Ontrack Data Recovery has performed successful recoveries on drives that have been in fires, floods or that have had damage to the Base-Casting Assembly. In some cases where there is physical media damage, Ontrack Data Recovery engineers can force the drive to read around those bad areas using specially designed electronic modules and software that work directly on the hard drive. What does this mean for you? You are well positioned to be a recovery solutions provider for your clients by working with Ontrack Data Recovery. Advancements from Ontrack Data Recovery clean room engineers worldwide result in quality recoveries. This attention to advancing technology has saved severe losses in time, money and digital resources for thousands of companies. While most companies have a backup program in place, data recovery produces the latest original files - not an older copy of the file. Ontrack Data Recovery works with hard drive manufacturers in producing software for hard disk installation. Ontrack Data Recovery also writes hard drive analysis software for manufacturers. Many manufacturers and OEMs recognize Ontrack Data Recovery’s leadership in this field. Ontrack Data Recovery’s experience with hard drives goes back to our roots - the founders of Ontrack Data Recovery came from the storage division of Control Data Institute. By partnering with Ontrack Data Recovery you have extended your capabilities in disaster recovery. While a disaster is a traumatic and frustrating experience, having a hero during rough times is reassuring. By utilizing Ontrack Data Recovery recovery capabilities you can be that hero. We will work with you to get your client’s data back as soon as possible. Our clean room staff will not stop until they get every last bit of recoverable data. Our data recovery lab engineers will do all they can to put the file system back in order so that the original data is found. If there should be corruption in some of the files, we will work on the files with Ontrack Data Recovery’ EasyRecovery FileRepair software to get all of the usable data back. All of this provides you with the edge when a disaster happens. Being an Ontrack Data Recovery Partner means you have Ontrack Data Recovery’s worldwide resources working for you. Original article by: hhtp://

Sunday, February 5, 2012

Data recovery

Data Recovery - Introduction

The right software can enable you to not only retrieve files that you have unintentionally deleted, but also, in some cases, data that has been lost due to a virus attack.

One of the key things in choosing the right software, is to know how the data was lost. Whether it was due to a virus, a mistake on your part, or even a hardware failure, so that you can decide which is the best data recovery method to use.

If you are quick enough, it is possible that you will not even need the data recovery software. When data is deleted it is not always trashed straight away. The operating system will change the file so that it won't be displayed when you're looking for it.

If you can find this gap in the system before the computer uses it for something else, then it is possible to simply undelete it and the file will reappear with all your data. This way you can avoid the need for data recovery software and you should be back in business.

The trick is to be very quick and find the gap in the system before doing too much other work, as this, especially if your hard drive has got very little unused space, may cause the computer to use the gap for something else. If you have not noticed the loss, and the computer has used it, then probably your best chance is in using some good quality data recovery software or service.

Another problem can arise if you decide to repair the drive by defragging the computer, before you have a chance to try any data recovery. You probably will not lose all of it, but it is possible to lose some of it, as when you defrag it can cause some of the files to be overwritten.

Of course even if you only use one or two small files by doing this, chances are they will be the most important ones! So it is best to try to get to grips with your data recovery before doing any defragging. Even if you are not actively running this application, you should think whether you have preprogrammed to defrag the disc at specific intervals.

So if you think you have lost any data, it is always best to try and recover it before doing anything else. That way you have a much better chance of success with your data recovery.

Tuesday, June 21, 2011

Mac Recovery

Mac Recovery in Case of Deletion Or Inaccessibility of FileVault Sparse Image by Allen Sood

Macintosh systems are quite advanced in their architecture and are incorporated with various features for the safety of user's data. FileVault is such a type of application that facilitates the encryption of the data in your home directory/folder. While the FileVault protection is 'ON', the home folder/directory transforms into an encrypted disk image.

Monday, September 13, 2010

Flood Emergence in Pakistan

"I will never forget the destruction and suffering I have witnessed today. In the past I have witnessed many natural disasters around the world, but nothing like this."

- U.N. Secretary-General Ban Ki-moon

Floods in Pakistan 2010The floods in Pakistan have caused horrific damage to 25% of the country (roughly equal to the size of Italy). Homes, businesses, crops, and lives have been lost.

An estimated 1,600 people are dead, 3.5 million children are at high risk from deadly water-borne diseases, and more than 20 million people have lost their homes, their food, and have no sanitation.

To put this in perspective, according to the UN, the Pakistan floods have affected more people than the 2004 Indian Ocean tsunami, the 2005 Kashmir earthquake, and the 2010 Haiti earthquake combined.

Your contributions will help train necessary aid workers and provide emergency supplies such as clean water, shelter, and medical supplies.
Pakistan Flood and we thankful to all volunteer for recovery efforts in Pakistan.

for more Detail and Information

Account for flood relief from ISPR website
This is the account for giving the money for flood affectees and u can verify this acount from ISPR website as well.

The donation in cash can be deposited in Army Relief Fund at Askari Bank Limited, General

Headquarters Branch, Rawalpindi

Account Number:


Account for Donations in PAK Rupees
The donation in PAK Rupees can be deposited in Army Relief Fund for Askari Bank Limited, General Headquarters Branch, Rawalpindi Account Number: 0028010121825-8

Account for Donations in US Dollars
The donations in US Dollar can be proceeded to JP MORGAN CHASE BANK, NEW YORK USA. SWIFT BIC CODE: CHASU33 for the credit of Askari Bank Ltd, Karachi Branch, Account Number: 001-1-1678273 SWIFT BIC CODE: ASCMPKKA for onward credit to Askari Bank Ltd, GHQ branch, Rawalpindi, Pakistan A/C# 0028010121825-8